# Electron Ionization Mass Spectrometric Studies of 1,2-Dihydro-2-[2-(1',3'-benzo-thiazolyl)]-3H-indazol-3-one and 1,2-Dihydro-2-(3',4'-dimethylphenyl)-6,7-dimethoxy-3H-indazol-3-one

ABDUL R. RAZA<sup>1</sup>, NASIM H. RAMA<sup>1\*</sup>AND I. REHMAN<sup>2</sup>

<sup>1</sup>Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan.

<sup>2</sup> IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK.

(Received 18th March, 1998, revised 20th September, 1998)

Summary:Electron ionization mass spectra of 1,2-dihydro-2-[2-(1',3'-benzothiazo-lyl)]-3H-indazol-3-one (2a) and 1,2-dihydro-2-(3',4'-dimethylphenyl)-6,7-dimethoxy-3H-indazol-3-one (2b) and their related compounds (1a-b) are described with the help of LREIMS. The molecular formulae are further confirmed by high resolution peak matching of molecular ion peaks exhibited by EIMS.

## Introduction

2-Substituted indazolones [1] are an important class of hetrocycles which find a number of useful applications. Colour couplers of indazolinone type had long been used to produce colour photographic images. Thus, 5-(steraroylamino)-3-indazolinone is major ingredient of an emulsion for positive motion picture films [2]. Indazolone derivatives have been tested for antihyperlipodemic activity [3] in male mice. The N-2-butylindazolone was the most active compound. 4-Carbamoylindazol-3-ones [4] are potent 5-lipoxygenase (5-LPO) inhibitors. Thus 1,2-dihyro-2-methyl-4-(pentylcarbamoyl)-3H-indazol-3-one had ED<sub>50</sub> of 30-100 mg/kg orally in rats for 5-LPO inhibitation. Thermal transfer sheets containing inks

coloured with indazolone derivatives have been patented [5].

We have reported [6,7] already the synthesis of 1,2-dihydro-2-[2-(1',3'-benzothiazolyl)]-3Hindazol-3-one (2a) and 1,2-dihydro-2-(3,4-dimethylphenyl)-6,7-dimethoxy -3H-indazol-3-one (2b) and their related compounds (Ia-b). In this article we wish to report low resolution electron ionization mass spectral (LREIMS) studies of these compounds [1a-b & 2a-b]. The molecular formulae of these compounds were further confirmed by high resolution electron ionization mass spectral (HREIMS) and peak matching of molecular ion

<sup>\*</sup>To whom all correspondence should be addressed.

Table-1: HREIMS of molecular ion peaks of the compounds (1a-b & 2a-b).

| Compd. | Mol. Formulae                                    | M(m/z)   |          |
|--------|--------------------------------------------------|----------|----------|
|        |                                                  | Calc.    | Found    |
| la     | C14H9ON5S                                        | 295.0528 | 295,0523 |
| 1b     | $C_{17}H_{18}O_{3}N_{4}$                         | 326.1379 | 326.1380 |
| 2a     | C <sub>14</sub> H <sub>9</sub> ON <sub>3</sub> S | 267.0466 | 267.0460 |
| 2b     | $C_{17}H_{18}O_3N_2$                             | 298.1317 | 298.1312 |

Scheme-1

peaks exhibited by electron ionization mass spectra (EIMS) are listed in Table-1.

### **Results and Discussions**

The mass fragmentation patterns of these compounds (1a-b & 2a-b) are assigned with the help of LREIMS and are depicted in Schemes 1-3.

2-Azido-N-2-(1',3'-benzothiazolyl)benzanilide (1a) and 2-Azido-3,4-dimethoxy-N-(3',4'-dimethylphenyl) benzanilide (1b)

The EIMS of (1a-b) afforded radical cations at m/z 295 (C<sub>14</sub>H<sub>9</sub>N<sub>5</sub>OS, 1a) and 326 (C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub>, 1b) The loss of N<sub>2</sub> molecule from (1a-b) yielded radical cations at m/z 267 ( $C_{14}H_9N_5OS$ , 1aa) and 298 (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub>, **1b**a) followed by the reduction and ring opening afforded other raidcal cations at m/z 269  $(C_{14}H_{11}N_5OS, 1ab)$  and 300  $(C_{17}H_{20}N_2O_3, 1bb)$ . The loss of 2-amino-1,3-benzothiazolyl radical from (1ab) and 3,4-dimethylaniline radical from (1bb) yielded cations at m/z 120 (C<sub>7</sub>H<sub>6</sub>NO, 1ac) and 180 (C<sub>9</sub>H<sub>10</sub>NO<sub>3</sub>, 1bc) followed by the loss of CO molecule afforded other cations at m/z 92 (C<sub>6</sub>H<sub>6</sub>N 1ad) and 152 ( $C_8H_{10}NO_2$  1bd). The loss of CO molecule from (1aa-ba) yielded radical cations at m/z 239  $(C_{13}H_9N_3S, 1ae)$  and 270  $(C_{16}H_{18}N_2O_2 1be)$ followed by the loss of N2 molecule afforded radical cations at m/z 211 (C<sub>13</sub>H<sub>9</sub>NS, 1af) and 242 (C<sub>16</sub>H<sub>18</sub>O<sub>2</sub>, 1bf). The loss of 1,3-benzothiazolyl radical from (1ae) and 3,4-dimethylbenzene radical from (1be) yielded cations at m/z 105 (C<sub>6</sub>H<sub>5</sub>N<sub>2</sub> 1ag) and 165 (C<sub>8</sub>H<sub>9</sub>N<sub>2</sub>O<sub>2</sub>, 1bg) followed by the loss of N<sub>2</sub> molecule afforded cations at m/z 77 (C<sub>6</sub>H<sub>5</sub> 1ah) and 137 (C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>, **1bh**) and the loss of 1,2-benzodiazol-3one from (1aa) and 6,7-dimethoxy-1,2-benzadiazol-3-one from (1ba) yielded radical cations at m/z 135  $(C_7H_5NS, 1ai)$  and 106  $(C_8H_{10}, 1bi)$ . The loss of 2amino-1,3-benzodiazolyl radical from (1a) and 3,4dimethylaniline radical from (1b) afforded cations at m/z 146 ( $C_7H_4N_3O$ , 1aj) and 206 ( $C_9H_8N_3O_2$ , 1bj). The loss of N<sub>2</sub> molecule from (1aj-bj) yielded cations at m/z 118 (C<sub>7</sub>H<sub>4</sub>NO, 1ak) and 178 (C<sub>9</sub>H<sub>8</sub>NO<sub>3</sub>, 1bk) followed by the loss of CO molecule afforded cations at m/z 90 (C<sub>6</sub>H<sub>4</sub>N, 1al) and 150 (C<sub>8</sub>H<sub>8</sub>NO<sub>2</sub> 1bl). (Scheme-1).

1,2-Dihydro-2-[2-(1',3'-benzthiazolyl)]-3H-indazol-3-one (2a)

The EIMS of (2a) afforded radical cation at m/z 267 (C<sub>14</sub>H<sub>9</sub>N<sub>3</sub>OS, **2a**). The reduction and ring opening of (2a) at high temperature during EI (+Ve) vielded another radical cation at m/z 269 (C14H11N3OS, 2aa) followed by the loss of 2-amino-1,3-benzothiazolyl radical afforded a cation at m/z 120 (C2H6NO, 2ab). The loss of CO molecule from (2ab) yielded another cation at m/z 92 (C<sub>6</sub>H<sub>6</sub>N, 2ac). The loss of CO molecule from (2a) afforded a radical cation at m/z 239 (C<sub>13</sub>H<sub>9</sub>N<sub>3</sub>S, 2ad) followed by the loss of N2 molecule yielded another radical cation at m/z 211 (C<sub>13</sub>H<sub>9</sub>NS, 2ae). The loss of 1,3benzothiazol from (2ad) afforded a cation at m/z 105 (C<sub>6</sub>H<sub>5</sub>N<sub>2</sub>, 2af) followed by the loss of N<sub>2</sub> molecule vielded phenyl cation at m/z 77 (C<sub>6</sub>H<sub>5</sub>, 2ag). The loss of benzyne from (2a) afforded a radical cation at m/z 191(C<sub>8</sub>H<sub>5</sub>N<sub>3</sub>OS, 2ah) and the loss of 1,2-benzodiazol-3-one molecule from (2a) yielded another radical cation at m/z 135 (C<sub>7</sub>H<sub>5</sub>NS, 2ai). (Scheme-2).

1.2-Dihvdro-2-(3',4'-dimethylphenyl)-6,7-dimethoxy-3H-indazol-3-one (2b)

The EIMS of (2b) afforded radical cation at m/z 298 (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub>, 2b). The loss of H radical from (2b) yielded a cation at m/z 297 ( $C_{17}H_{17}N_2O_3$ , 2ba). The loss of methyl radical from (2b) afforded a cation at m/z 283 (C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub>, 2bb) followed by the loss of CO molecule yielded another cation at m/z 255 (C<sub>15</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>, 2bc). The loss of o-xylene from (2bc) afforded a cation at m/z 149 (C<sub>7</sub>H<sub>5</sub>N<sub>2</sub>O<sub>2</sub>, 2bd) followed by the loss of N2 molecule yielded another cation at m/z 121 (C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>, 2be). The loss of N<sub>2</sub> molecule from (2b) afforded a radical cation at m/z 270 (C<sub>17</sub>H<sub>18</sub>O<sub>3</sub>, 2bf) followed by the loss of o-xylene radical yielded a cation at m/z 165 (C<sub>9</sub>H<sub>9</sub>O<sub>3</sub>, 2bg). The loss of CO molecule from (2bg) afforded a cation at m/z 137 (C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>, 2bh) and the loss of oxylene molecule from (2bf) yielded a radical cation at m/z 164 (C<sub>9</sub>H<sub>8</sub>O<sub>3</sub>, 2bi) followed by the loss of CO molecule afforded a radical cation at m/z 136 (C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>, 2bj). The loss of 6,7-dimethoxy-1,2dihydro-1,2-benzodiazol-3-one from (2b) yielded a cation at m/z 105 ( $C_8H_9$ , 2bk). (Scheme-3).

#### Experimental

Compounds (1a-b and 2a-b) were prepared according to the literature procedure [6,7]. All of them were characterized by IR and <sup>1</sup>H-NMR spectral data. The EIMS were recorded on MAT-311 instrument with an accelerating voltage of 3 kV and ionization energy of 70 eV. The temperature of the ion source was maintained at 250°C.

$$m/z = 120(100\%, 2ab)$$

$$m/z = 92(45.3\%, 2ac)$$

$$m/z = 135(19.3\%, 2ai)$$

$$m/z = 269(22.0\%, 2aa)$$

$$m/z = 267(79.1\%, 2a)$$

$$m/z = 191(10.3\%, 2ab)$$

$$m/z = 77(12.2\%, 2ag)$$

$$m/z = 105(21.0\%, 2af)$$

$$m/z = 239(2.5\%, 2ad)$$

$$m/z = 211(5.2\%, 2ac)$$

# Scheme-2

## Conclusion

The above fragmentation patterns show that the loss of N2 from molecular ions of compounds (1a & 1b) furnish the radical cations which are similar to (2a &2b) and their further fragmentation patterns are similar.

## References

- and Palazzo, G., Synthesis, 641 1. B.G. Gorsi (1978).
- 2. J.J. Jacob, U.S. 2,673, 801 (1954).
- 3. S.D. Wyrick, P.J. Voorstad, G. Cocolas and I.R. Hall, J. Med. Chem., 27, 768 (1984).

- 4. S.J. Foster, P. Bruneau. H.R.E. Walker and R.M. McMillan, Br. J. Pharmacol., 99, 113 (1990).
- J. Sugafuji, H. Satio, N. Nistani, Jpn. Kokia Tokkyo koho JP 02 32, 894 [90, 32, 894] (1998).
- 6. A. Saeed and N.H. Rama, J.Chem.Soc.Pak., 17, 232 (1995).
- 7. A. Saeed, Quaid-I-Azam University Islamabad, Pakistan, Ph.D Thesis (1994).